
Malicious URL Filtering – A Big Data Application

Min-Sheng Lin, Chien-Yi Chiu, Yuh-Jye Lee and Hsing-Kuo Pao

Dept. of Computer Science and Information Engineering

National Taiwan Univ. of Science and Technology

Taipei, 10607 Taiwan

M9915023, D9815013, yuh-jye and pao@mail.ntust.edu.tw

Abstract—Malicious URLs have become a channel for Internet
criminal activities such as drive-by-download, spamming and
phishing. Applications for the detection of malicious URLs are
accurate but slow (because they need to download the content or
query some Internet host information). In this paper we present
a novel lightweight filter based only on the URL string itself to
use before existing processing methods. We run experiments on
a large dataset and demonstrate a 75% reduction in workload
size while retaining at least 90% of malicious URLs.

Existing methods do not scale well with the hundreds of
millions of URLs encountered every day as the problem is
a heavily-imbalanced, large-scale binary classification problem.
Our proposed method is able to handle nearly two million URLs
in less than five minutes. We generate two filtering models by
using lexical features and descriptive features, and then combine
the filtering results. The on-line learning algorithms are applied
here not only for dealing with large-scale data sets but also for
fitting the very short lifetime characteristics of malicious URLs.
Our filter can significantly reduce the volume of URL queries
on which further analysis needs to be performed, saving both
computing time and bandwidth used for content retrieval.

Index Terms—Data Mining, Machine learning, Information
Security, Information Filtering

I. INTRODUCTION

Malicious URLs have become a common channel to facil-

itate Internet criminal activities such as drive-by-download,

spamming and phishing. Many attackers try to use these web

sites for spreading malicious programs or stealing identities.

Kaspersky Lab [14] reports that browser-based attacks in 2012

increased from 946,393,693 to 1,595,587,670 and 87.36%

of these used malicious URLs. The Anti-Phishing Working

Group (APWG) [4] also reports that phishing attacks using

malicious URLs increased from 93,462 to 123,486 in the

second half of 2012. Of the millions of URLs used each

day less than 0.01% are malicious and furthermore they are

short-lived in order to avoid blacklist blocking. There is an

urgent need to develop a mechanism to detect malicious URLs

from the high volume, high velocity and high variety data.

Many information security companies and organizations offer

malicious URL detection including Google’s safe browsing [9]

and Trend Micro’s web reputation services [16].

The blacklist is a general solution for protecting users from

the malicious web sites, examples include PhishTank [18],

SORBS [2] and URIBL [3]. These services provide a list

of malicious web sites reported by volunteers or collected

by web crawlers and verified by some reliable back-end

system. The content-based analysis service BLADE [1] is

also a well known solution for detecting malicious web sites.

They download the web page content and analyze it for

malicious content. To download the content for analyzing is

time consuming and consumes bandwidth. Therefore content-

based analysis services will be integrated with a blacklist or

a cache mechanism to optimize the performance and avoid

re-analyzing the same URL. However, content-based analysis

methods are not a practical solution for the large volume of

URLs and the speed at which new URLs can be created. We

propose a filtering mechanism to be used before the content-

based analysis to remove the bulk of benign URLs, reducing

the volume of URLs on which content-based analysis needs

to be performed. This job is just like finding a needle in a

burning haystack because of the following challenges:

• Large scale: the service provider averagely receives sev-

eral million URLs every hour

• Extremely imbalanced data set: the malicious URLs are

only around 0.01% of the total received URLs

• Sparse data set: the lexical features give us a very sparse

data set

To meet the goal of reducing the great amount of URL

queries, the filtration system should be able to work in real-

time and achieve a high detection rate with a tolerable false

alarm rate. The system should also be able to update the

model using the feedback of the content-based analysis system.

In this paper, we introduce a framework to filter the non-

suspicious URLs using only features extracted from the URL

string. We set the filtration as a binary classification problem.

The proposed framework combines lexical information and

static characteristics of URL strings together for classifica-

tion. We evaluate our framework using a real-world data set,

which is a large-scale and extremely imbalanced data set. Our

framework can filter out 75% of URLs, which are regarded

as benign. The remaining 25% suspicious URLs cover around

90% of the malicious ones. Our framework does not use a

network query or web page contents. All the features are

directly extracted from the URL string, so our URL filtering

system can work efficiently. More specifically, our system

updates the model with one million of URLs in less than five

minutes. The prediction process of our system is also efficient;

one million URLs can be classified in less than two minutes.

II. RELATED WORK

Garera et al. [8] designed 18 hand-selected features to

classify phishing web sites, such as page rank information and

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 589



the period of accessible time. The 18 hand-selected features

are very similar to our static characteristic features, but these

features still need to query information from the network.

Our work extracts the static characteristic features only from

the URL string and gives a well representation to distinguish

benign and suspicious URLs.

The work by Ma et al. [13] is the most popular research on

malicious web site in recent years. They utilize the blacklist,

host-based information and lexical information of URLs to

build different feature sets. In order to handle large-scale data

sets, they use an online learning algorithm and compare the

performance with a batch learning algorithm. The results of

tests on a data set spanning 100 days are promising. We

study their lexical features and adapt them to our own. Le et

al. [11] present a modified version of the method proposed

by Ma et al. by using another online learning algorithm.

They merge the study from Garera et al. to improve the

detection performance. Thomas et al. [20] design a framework

to extract lexical, host-based and page content information

as features and implement their idea on a cloud computing

platform. This framework is tested on a data set of spam

messages gathered from Twitter and e-mail. The result shows

the framework achieves high performance at little cost. Pao

et al. [19] proposed using a Kolmogorov complexity-based

measure to detect malicious URLs. They adopt a compression

method to approximate Kolmogorov complexity, and used the

approximation as a significant feature for detection. Unlike

their goal of detecting malicious URLs, our work focuses

on filtering the large amount of URLs to pick up the most

suspicious ones. We use the decision value of the online

model to quantify if a URL is sufficiently suspicious to justify

downloading the linked content for analysis.

Blum et al. [5] have proposed a similar idea. They try to

avoid network queries to reduce processing time, and also

choose a confidence-weighted algorithm for lexical informa-

tion features to detect phishing sites. Different from them,

we focus on not only the phishing pages but also all the

attacks over the URLs. We also evaluate our framework on

a large-scale and extremely imbalanced data set. The problem

in the work by Whittaker et al. [21] is similar to ours in

that they too use an imbalanced and large-scale data set.

They use the information of host-based, networking, lexical

and page content to classify web sites and automatically

generate their blacklist. The framework which we proposed

does not need to query the information from the network so

our system can handle the user query in real time. Several

projects have also explored different ways to protect users

from malicious URLs. Li et al. [12] proposed MadTracer

which can automatically generate detection rules to detect

malicious advertising activities. Invernizzi and Comparetti [10]

presented EVILSEED to search malicious web pages more

efficiently from an initial seed of known, malicious web page.

III. FEATURE EXTRACTION

In order to successfully separate benign URLs from ma-

licious ones, we design two feature sets to describe URLs.

TABLE I
COMPONENTS OF URL

Component Example

URL aneisig.es/vx/hstart.php?id=664&logon=141

Domain Name aneisig.es

Path vx/hstart.php

Sub-Directory vx

Filename hstart

File Extension php

Argument id=664&logon=141

TABLE II
THE DELIMITERS OF URL COMPONENT

Component Delimiters

Domain Name dash and slash

Path dash, dot, underscore and back slash

Argument ampersand and equal sign

These two feature sets represent the lexical information and

some other characteristics of URLs. The first feature set which

includes lexical features describes the lexical information of

URLs. The second feature set which includes descriptive fea-

tures describes some statistical characteristics of URLs. These

two feature sets represent two different natures of the URLs.

At the first sight, we can imagine that the lexical features

are effective for malicious URL detection by a blacklist rule.

However, most of malicious web sites have a short lifetime

and change their addresses frequently to avoid being blocked

by the blacklist. Therefore, even though the blacklist could

be effective for a short period of time we need to study

some other features that can also be effective in a long run.

In our opinion, the lexical features describe the dynamic

nature of URLs by the “words” used in the URLs; while

the descriptive features describe the static nature of URLs

since the characteristics between benign and malicious URLs

are rarely changed drastically. For example, phishing sites

often use similar letter or symbols (such as the lower case

of ‘L’ and the digit ‘1’) to confuse victims, therefore the

sites may have some particular statistics about the number

or the consecutive relationship of alphabets and digits. Some

other malicious sites tend to have randomly chosen characters

or characters that are less recognized as words of known

meanings. In summary, we believe that the lexical features

are more effective than descriptive features, but they can

only work in a short period of time; on the other hand, the

descriptive features are less-effective than the lexical features,

but they may work for a longer time. In this paper, we combine

these two complementary feature sets which serve as two

different views to filter malicious URLs. Before introducing

the feature sets, we give a definition of URL components.

We split the URL into several components as shown in table

I. The lexical features and descriptive features are extracted

from these components. The details are described in following

subsections.

590



A. Lexical Features

The lexical features use the bag-of-words model to describe

URLs. We use three components for extracting lexical features:

domain name, path and argument. Each component is split

by specific delimiters. The details of delimiters are shown in

table II. Additionally, we use a three character length sliding

window on the domain name for generating the fixed length

tokens. This method can identify a malicious website which

subtly modifies its domain name.

Each word/feature generated from URLs is stored in a

dictionary with a specific index, only the same word can

get the same index. This dictionary could be dynamically

updated with data streaming, but in practice the dictionary

would consume a large amount of memory for the words

generated from millions of URLs. For this reason, we use

following methods to remove less useful words and to reduce

memory usage.

1) Remove zero-weight words: Removing zero-weight

words in the learned model is an easy and intuitive method.

The learned model of lexical features are a set of weights of

the extracted words (see section IV). If the weight of the word

is zero, it means this word doesn’t provide any information on

giving a decision. In our setting, these zero-weight words will

be removed from the dictionary after an updating procedure is

finished. If the removed word appears again in next updating

procedure, it will be treated as another new word. It means

the reappeared word will get a new index which is different

from removed one.

2) Remove argument value words: The argument value in

a URL is usually a serial number, random string or user input.

Except for the user input which may contain some information,

the words generated from the serial number and random strings

are meaningless. These words will consume much memory

but provide no help for classifying URLs. For this reason, we

decide to remove all words from argument value. For example,

in table I, the argument part is “id=664&logon=141”. We

remove the argument value “664” and “141” and are leave

the argument names with “id” and “logon”.

3) Replace IP address with an AS number: Many URLs use

an IP address for their domain name. To reduce the dictionary

size and effectively manage these IP addresses, we use the

mapping table from MaxMind [15] for mapping the IP address

to an Autonomous System (AS) number. Each AS numbers

uniquely identifies a network on the Internet, therefore, the

IP will be changed to an AS number which represents the

network which contains the IP address.

4) Replace the digits in words with regular expression:

Many strings differ only in numerical values, so we replace

all numerical values by a regular expression. For example,

if two words are abc123 and abc789, they will be rewritten

by the same regular expression “abc[0-9]+”. So if some words

contain different digit characters, they will be seen as the same

word.

5) Keep the words generated in the last 24 hours only: In

addition to the index, we also give every word a time stamp.

In each training process, if a word exists in the dictionary and

occurs again, the time stamp will be updated. If any word has

not been updated for 24 hours, the words will be removed

because we think the words are expired.

B. Descriptive Features

In descriptive features, we split the path component into

sub-directory, filename and file extension to obtain more

detailed information. To accurately extract the information on

domain name, we remove the “www” (and www with any

number), country code top-level domain (ccTLD) and generic

top-level domain (gTLD). Removing these tokens can help us

to focus on the remaining part chosen by the domain name

owner.

The descriptive features represent the static characteristics

of the URL. These static characteristics are different from

lexical features, which can be easily changed by slightly

modifying the characters of URLs. We studied the URLs

of phishing and malware sites to design these descriptive

features. These features can help us to distinguish malicious

and benign URLs. Table III shows the descriptive features,

extracted components and dimension.

1) Length: From our observation, the malicious URLs

commonly need to add some keywords in its components.

This action causes URLs to become noticeably lengthier.

For detecting this situation, we record the length of each

component. All these length values will be stored by the

logarithm base 10 to avoid the normalization process being

unduly affected by the large length value.

2) Length ratio: In addition to length, we also want to see

the length ratio of different components. It can help to find

the abnormal component. The length ratio feature uses the

length of URL, domain name, path and argument component.

We check all of the combinations of these components and

compute the length division as follows:

• Domain Name divided by URL

• Path divided by URL

• Argument divided by URL

• Path divided by Domain Name

• Argument divided by Domain Name

• Argument divided by Path

Each pair of combination on the list contributes a descriptive

feature in our feature set.

3) Letter-digit-letter and Digit-letter-digit: For detecting a

phishing website masquerading as another website, we record

the number of occurrences of the following two patterns: a

letter between two digits (ex. award2o12) and a digit between

two letters (ex. examp1e). They can help detect whether the

URL is trying to deceive the user or not.

4) Delimiter count and Longest word length: We previously

used delimiters to split the components in lexical features,

now we create a descriptive feature by counting the number

of delimiters in each component. The length of the longest

word after splitting is also recorded.

5) Letter, Digit and Symbol count: Here, we categorize all

characters as letter, digit and symbol and tally the frequency

591



TABLE III
THE USED COMPONENT AND DIMENSION OF DESCRIPTIVE FEATURE

URL Domain Name Path Sub-directory Filename File Extension Argument Dim.

Length
√ √ √ √ √ √

6

Length ratio
√ √ √ √

6

Letter-digit-letter
√ √ √ √ √ √

6

Digit-letter-digit
√ √ √ √ √ √

6

Delimiter count
√ √ √

8

Longest word length
√ √ √

3

Letter count
√ √ √ √ √ √

6

Digit count
√ √ √ √ √ √

6

Symbol count
√ √ √ √ √ √

6

Alphabet entropy
√ √ √ √ √ √

6

Number rate
√ √ √ √ √ √

6

Executable file or not
√

1

IP as domain name
√

1

Default port number
√

1

Character continuity rate
√

1

Total 69

of each of the three types in all URL components except path.

Each type provides a 6-dimensional vector as a further feature.

6) Alphabet entropy and Number rate: Some URLs of

malicious websites are randomly generated. For recognizing

this static characteristic, we use the alphabet entropy and the

rate of number to help us distinguish the randomly generated

URLs. Set P (xi) is the probability of letter xi occurs in the

URL component, the alphabet entropy H can be computed by

H = −
25∑
i=0

P (xi) logP (xi)

where (x0 = a, x1 = b, ..., x25 = z)

The number rate records the proportion of the digits in each

URL component. This is computed by tallying the number of

occurrences of digits and dividing by the string length of URL

component. For example, the number rate of “Example123”

= 3/10 = 0.3.

7) Executable file or not: The executable file has a high

probability of being a malware [17]. We use a binary feature

to represent whether the file extension is “*.exe” or not. Notice

that we only look at the file extension of the URL rather than

download the real file.

8) Using IP as domain name and Default port number:

Most benign URLs do not use IP address as its domain name,

and the port number of website is usually 80. Based on these

ideas, we check if the domain name is an IP address and if

the port number is the default HTTP port or not.

9) Character continuity rate: Generally, the owners of

legitimate websites prefer to use a simple and memorable

domain name, even if they need to pay more money. But

malicious website owners frequently change the domain name

so they are unlikely to pay more money for buying a better

domain name. Based on this idea, we design the character

continuity rate of domain name.

First we categorize the character to letter, digit and symbol.

The domain name will be split by the connection of different

character category, and the sum of the longest token length

of each character type will divide by the domain length. For

example, the continue rate of “abc567-gt” = (3+ 3+ 1)/9 =
0.77.

IV. ONLINE LEARNING ALGORITHM

To meet our goal on dealing with large-scale data efficiently,

we choose to use online learning algorithms for building our

filters. An online learning algorithm works in rounds. For each

round i, the algorithm receives an instance xi ∈ R
d to make

the prediction with its model wi. And then it receives the true

label yi ∈ {−1,+1} and suffers prediction loss �(wi; (xi, yi)).
In our system, we choose the Passive-Aggressive (PA)

algorithm and the Confidence Weighted (CW) algorithm as our

learners to train our models. The PA algorithm tries to modify

the model as little as possible to correctly classify the new

incoming instance. This rule matches our idea of maintaining

a stable model for describing the static characteristics. The

CW algorithm updates the weights of the model by their con-

fidence. The weights of rarely updated features will be updated

more aggressively. For the lexical features, this algorithm can

maintain the dynamic lexical information appropriately.

A. Passive-Aggressive Algorithm

The PA algorithm [6] uses the hinge loss function. For each

instance xi, PA will solve following optimization problem:

wi+1 = argmin
w∈Rd

1

2
‖w − wi‖

2

s.t. �(w; (xi, yi)) = 0

For each round i, the model will be updated if the new

instance xi is misclassified. The updated model should cor-

rectly predict xi and the difference between the old model

and updated model should be minimized. If yi is mislabeled,

the PA algorithm will be updated substantially in the wrong

direction. To deal with this phenomenon, it can add non-

negative slack variable ξ to this optimization problem:

wi+1 = argmin
w∈Rd

1

2
‖w − wi‖

2
+ Cξ

s.t. �(w; (xi, yi)) ≤ ξ and ξ ≥ 0

592



Labelled URLs

PA Algorithm

CW Algorithm

Dense Feature 
Extraction

Sparse Feature 
Extraction

Malicious URL Filter

Dense Model & 
Threshold

Sparse Model & 
Threshold

Fig. 1. Training/Updating Process

The above formulation is called PA-I. The positive parame-

ter C controls the effect of the slack term on the objective

function, a smaller C will give a larger soft margin. The

closed-form solutions of PA-I are as follows:

wi+1 = wi + αiyixi

αi = min

{
C,

�(w; (xi, yi))

||xi||2

}

For the above closed-form solution, the updating step size

is limited by C, so even if noise exists the model will not be

greatly altered in the wrong direction.

B. Confidence Weighted Algorithm

The CW algorithm [7] uses the confidence to decide the

updating step size of the weights. The model w ∼ N (μ,Σ)
which μ ∈ R

d and Σ ∈ R
d×d, and the divergence between old

model and updated model will be minimized on the condition

of correctly predicting xi. The optimization problem is as

follows:

(μi+1,Σi+1) = minDKL(N (μ,Σ)‖N (μi,Σi))

s.t. Pr[yi(w · xi) ≥ 0] ≥ η

Here DKL is KL Divergence and η is the probability with

which the model correctly predicts the training instance, so

η ∈ [0, 1]. And The closed-form is as follows:

μi+1 = μi + αiyiΣixi

Σ−1

i+1 = Σ−1

i
+ 2αiφdiag

2(xi)

where the αi is the learning rate which can be computed

by the following equation:

αi = max(0, γi)

γi =
−(1 + 2φMi) +

√
(1 + 2φMi)2 − 8φ(Mi − φVi)

4φVi

where Φ is the cumulative distribution function of the

Gaussian distribution, and φ = Φ−1(η). The Mi = yi(xi, μi)
is the mean margin and the Vi = xiΣxi is margin variance

before updating.

Malicious URL Filter

URL Query

Back-End
System

Have Any 
Malicious 

Prediction?

YES

Benign URL

NO

Dense Feature 
Extraction

Sparse Feature 
Extraction

Dense Model & 
Threshold

Sparse Model & 
Threshold

Fig. 2. Prediction Process

V. OUR PROPOSED FRAMEWORK

Our goal is to construct a front-end system, which can

automatically filter out 75% of URLs queried and pass 75% or

more malicious URLs to the back-end system. In other words,

we want to reduce the loading of the back-end system down to

25% while ensuring that at most 25% of genuinely malicious

URLs are dropped.

We use the CW algorithm as the learner of lexical features,

because the nature of lexical information is similar to Natural

Language Processing (NLP). For descriptive features, we

select the PA-I algorithm, because PA-I can make sure that the

model is modified within a limited range in each round. The

PA-I is suitable for descriptive features, because the descriptive

features represent the static characteristics of the URL and so

its weights should not be changed greatly.

In the training/updating process (see Figure 1), our system

receives the URL instances and its label, each instance will

be processed to compute both a lexical feature vector and a

descriptive feature vector. The descriptive feature vectors are

normalized by min-max normalization using min/max values

obtained from the first training set. After feature extraction,

both descriptive feature and lexical feature vectors are sent

to corresponding learning modules for updating the model.

For dealing with the extremely imbalanced data, we use

the over-sampling technique to make sure the characteristics

of malicious URLs are learned by both filters. During the

training/updating process, each benign instance will follow a

randomly picked malicious instance to feed into the learners.

That will let both learners receive balanced data to train/update

the model.

For achieving our goal, we use the updated models to

compute the suspicious score of each instance. The suspicious

score is the decision value computed by a given model and

a predicting instance. For binary classification, the classifier

predicts an instance as normal if the score is less than zero.

In our framework, we replace the zero by a threshold which

is derived from training data. Here we define a configurable

parameter τ to obtain the threshold. After training, we will

evaluate the suspicious score of all training instances and use

τ percentile to decide our threshold. Namely, that τ percent of

the scores should be within this selected score. We set the τ
as 85% in our framework for deriving the threshold of lexical

and descriptive filter. Notice that, the thresholds of descriptive

593



0

2

4

6

8
x 10

−4

04
/0

7
04

/0
8

04
/0

9
04

/1
0

04
/1

1
04

/1
2

04
/1

3
04

/1
4

04
/1

5
04

/1
6

Daily Malicious Rate

(a) April

0

2

4

6

8
x 10

−4

09
/1

4
09

/1
5

09
/1

6
09

/1
7

09
/1

8
09

/1
9

09
/2

1
09

/2
2

09
/2

3
09

/2
4

09
/2

5
09

/2
6

Daily Malicious Rate

(b) Sept.

0

2

4

6

8
x 10

−4

11
/2

2
11

/2
3

11
/2

4
11

/2
5

11
/2

6
11

/2
7

11
/2

8
11

/2
9

11
/3

0
12

/0
1

12
/0

2
12

/0
3

12
/0

4
12

/0
5

12
/0

6
12

/0
7

12
/0

8
12

/0
9

12
/1

0
12

/1
1

12
/1

2
12

/1
3

12
/1

4
12

/1
5

12
/1

6
12

/1
7

12
/1

8
12

/1
9

12
/2

0
12

/2
1

12
/2

2
12

/2
3

12
/2

4
12

/2
5

Daily Malicious Rate

(c) Nov.-Dec.

Fig. 3. Daily Malicious Rate

0%

5%

10%

15%

20%

25%

30%

04
/0

7
04

/0
8

04
/0

9
04

/1
0

04
/1

1
04

/1
2

04
/1

3
04

/1
4

04
/1

5
04

/1
6

DR MMR

(a) April

0%

5%

10%

15%

20%

25%

30%

09
/1

4
09

/1
5

09
/1

6
09

/1
7

09
/1

8
09

/1
9

09
/2

1
09

/2
2

09
/2

3
09

/2
4

09
/2

5
09

/2
6

DR MMR

(b) Sept.

0%

5%

10%

15%

20%

25%

30%

11
/2

2
11

/2
3

11
/2

4
11

/2
5

11
/2

6
11

/2
7

11
/2

8
11

/2
9

11
/3

0
12

/0
1

12
/0

2
12

/0
3

12
/0

4
12

/0
5

12
/0

6
12

/0
7

12
/0

8
12

/0
9

12
/1

0
12

/1
1

12
/1

2
12

/1
3

12
/1

4
12

/1
5

12
/1

6
12

/1
7

12
/1

8
12

/1
9

12
/2

0
12

/2
1

12
/2

2
12

/2
3

12
/2

4
12

/2
5

DR MMR

(c) Nov.-Dec.

Fig. 4. Prediction Performance

filter and lexical filter are independently obtained from this

process and τ could be changed for different situation.

In the prediction process (see Figure 2), each URL is

extracted to descriptive feature vector and lexical feature

vector (the descriptive feature vector is normalized.) After

feature extraction, the vectors are sent to the corresponding

model to estimate their suspicious score. If any suspicious

score is greater than the threshold, the URL will be predicted

as a suspicious URL and it should be passed to the back-end

system. In our framework both the lexical filter and descriptive

filter can work independently. To combine their prediction

results, if one of them predicts an URL as suspicious, the

URL will be considered as suspicious and will be analyzed

by back-end system.

When the back-end system receives the filtered suspicious

URLs, the further results will be fed back to our system

by a more accurate but time consuming technique (such as

content-based analysis). These results will be used as the

ground truth to update our model. In our idea, the filtered

benign URLs should also be examined by another light-weight

technique (such as rule-based detection or analysis with host-

based features) to double checked results. These checks can

also be used to update our model.

VI. EXPERIMENTS

Our data set is very large and extremely imbalanced, one

million URLs only contain approximately one hundred mali-

cious instances. For this reason, the accuracy is not suitable

for measuring our performance. Instead of accuracy, we define

the download rate and the missing malicious rate to evaluate

our prediction performance. We evaluate our framework using

three data sets (include a monthly data set), and record the

average processing time. For understanding the contribution

of the descriptive and lexical filter, we also independently

evaluate each filter on these data sets. Finally, we run an

experiment to evaluate the performance of two filters without

TABLE IV
THE INFORMATION OF DATA SET

Server 1 Server 2

Data Set Name Apr. Sept. Nov.-Dec.

Date Range 04/07-04/16 09/14-09/26 11/22-12/25

# of URL 261,426,377 284,429,411 848,867,427

# of Attacks 20,280 26,610 125,783

Malicious Rate 0.0077% 0.0093% 0.0148%

updating. The results help us to explore the differences and

properties of two filters. In our evaluation, the parameter η of

CW (lexical learner) is set to 0.85 and C of PA-I(descriptive

learner) is set to 0.001.

A. Data Set

The data set is provided by a security company which

provides web reputation services. They collected three data

sets from two different servers, which are named Server 1

and Server 2. All the URLs in three data sets are unique and

labeled as eigher benign or malicious. The first data set is

collected from Server 1 and the period is from April 7, 2011

to April 16, 2011. This data set is called April (Apr.) data set.

The second data set collected from Sever 2, and the period

is from September 14, 2011 to September 26, 2011 without

September 20. It is named after September (Sept.) data set.

The third data set is the longest data set from November 22,

2011 to December 25, 2011. It is collected from Server 2

and called November and December (Nov.-Dec.) data set. The

breakdowns of the data sets are shown in Table IV.

In our evaluation, the data set is segmented by hours. Each

training and prediction process is dealt with one hour data and

the performances are averaged by days. The daily malicious

rate of each data set is shown in Figure 3. The data sets have

on average one million instances per hour, but only contain a

few malicious instances. In a general classification task, this

situation will let the model classify all URLs as benign for

594



0%

10%

20%

30%

40%

50%

04
/0

7
04

/0
8

04
/0

9
04

/1
0

04
/1

1
04

/1
2

04
/1

3
04

/1
4

04
/1

5
04

/1
6

Combined MMR Lexical MMR Descriptive MMR

(a) April

0%

10%

20%

30%

40%

50%

09
/1

4
09

/1
5

09
/1

6
09

/1
7

09
/1

8
09

/1
9

09
/2

1
09

/2
2

09
/2

3
09

/2
4

09
/2

5
09

/2
6

Combined MMR Lexical MMR Descriptive MMR

(b) Sept.

0%

10%

20%

30%

40%

50%

11
/2

2
11

/2
3

11
/2

4
11

/2
5

11
/2

6
11

/2
7

11
/2

8
11

/2
9

11
/3

0
12

/0
1

12
/0

2
12

/0
3

12
/0

4
12

/0
5

12
/0

6
12

/0
7

12
/0

8
12

/0
9

12
/1

0
12

/1
1

12
/1

2
12

/1
3

12
/1

4
12

/1
5

12
/1

6
12

/1
7

12
/1

8
12

/1
9

12
/2

0
12

/2
1

12
/2

2
12

/2
3

12
/2

4
12

/2
5

Combined MMR Lexical MMR Descriptive MMR

(c) Nov.-Dec.

Fig. 5. The MMR result of Descriptive Filter, Lexical Filter and Combined Results

0%

10%

20%

30%

40%

50%

60%

09
/1

7
09

/1
8

09
/1

9
09

/2
1

09
/2

2
09

/2
3

09
/2

4
09

/2
5

09
/2

6

Descriptive MMR Lexical MMR

(a) Sept.

0%

10%

20%

30%

40%

50%

60%

11
/2

2
11

/2
3

11
/2

4
11

/2
5

11
/2

6
11

/2
7

11
/2

8
11

/2
9

11
/3

0
12

/0
1

12
/0

2
12

/0
3

12
/0

4
12

/0
5

12
/0

6
12

/0
7

12
/0

8
12

/0
9

12
/1

0
12

/1
1

12
/1

2
12

/1
3

12
/1

4
12

/1
5

12
/1

6
12

/1
7

12
/1

8
12

/1
9

12
/2

0
12

/2
1

12
/2

2
12

/2
3

12
/2

4
12

/2
5

Descriptive MMR Lexical MMR

(b) Nov.-Dec.

Fig. 6. The performance of static model

correctly predicting most of the instances. Additionally, the

malicious rates are rapidly increasing in the Nov.-Dec. data set,

the impact of this phenomenon will be shown in the evaluation

subsection.

B. Performance Evaluation

1) Measure: We use two measures as our criteria to judge

the performance of the malicious URL filter, the download rate

(DR) and missing malicious rate (MMR). The download rate

is the percentage of URLs classified as suspicious instances

by our system. It is also the rate at which content must be

downloaded for analysis by the back-end system. The missing

malicious rate is the rate of misclassification of malicious

instances as benign URLs. The two measures can help us to

judge the prediction performance in the extremely imbalanced

data set.

2) Evaluation: We will evaluate our implemented system

in this subsection and focus on following key points

• Performance of our framework in large and extremely

imbalanced data set

• Efficiency of our implemented system

• The differences between descriptive filter and lexical

filter.

a) Prediction performance: We use URLs of each hour

to train/update our implemented filter, then apply the filter to

classify the next hour of data. The daily average results are

shown in Figure 4. The download rates are steady at around

25% and missing malicious rates at 9% or lower after the first

day. This result shows that our framework can filter out 75%

URLs, and only a few malicious URLs will be lost. It is worth

noting that our system can achieve better performance with

a stable detection rate while the daily malicious rate rapidly

increased in Nov.-Dec. data set.

TABLE V
THE TIME OF TRAINING PROCESS AND PREDICTION PROCESS

Apr. Sept. Nov.-Dec.

Training Time (min.) 2.99 3.06 3.34

Prediction Time (min.) 1.08 1.15 1.28

b) Processing time: Table V shows the averaged time for

dealing with the URL strings that generated in one hour on

three datasets. In our approach, we do not need the host-based

information and the contents of web sites. Thus, we can train

our filtering models with more than one million URL strings

in 3.5 minutes including feature extraction, lexical filtering

model and descriptive filtering model. We can test more than

on million URL strings in 1.5 minutes.

c) Performance of descriptive and lexical filters: The

previous evaluations show our framework works well by

combining the prediction results of descriptive filter and lexical

filter. To evaluate the performance of each filter indepen-

dently, the individual missing malicious rate is compared with

combined results in Figure 5. As the figure shows, most of

malicious instances are detected by lexical filter. Although

the descriptive filter does not work well, it can be used as

a complement to the lexical filter for improving performance.

For further understanding of the difference between the lex-

ical filter and descriptive filter, we set up another experiment

to evaluate the stability and expiration time of models. We use

the data set from Sept. 14 to Sept. 19 as training data. The

data set from Sept. 17 to Sept. 26 is used as short-term testing

set and the Nov.-Dec. data set is used as long-term testing

data. The model and threshold generated from the training data

were not updated during testing. Figure 6 shows the MMR of

lexical filter is lower than descriptive filter in the short-term

595



testing set. But in the Nov.-Dec. data set, the MMR of lexical

filter becomes to increase and unstable. Even in middle of

December, the lexical filter misses more malicious URLs than

descriptive filter.

Based on these results, the lexical filter has unstable per-

formance over time. The model using lexical features needs

to continually update to retain its performance. In contrast

with the lexical filter, the descriptive filter has long-term

effectiveness but the detection ability is lower than the lexical

filter.

VII. CONCLUSION

We focus on a very practical problem, efficiently and

effectively detecting malicious URLs. Working with a world-

famous information security company, the goal is to provide

them a filtering system that is able to filter out 75% URLs

and the remaining portion should contain 75% of all malicious

URLs originally present. That is, both the download rate and

missing malicious rate should be less than 25%. The most

challenging part of this problem is how to find an extremely

small portion of malicious URLs out of a huge volume of

URLs being generated at high speed. The scale of the problem

and limited processing time prohibit the solution provided

by a conventional approach. We proposed a novel method

that uses the URL strings only for the detection. In the

proposed method, we combine the lexical information and

static characteristics of URL string. Without the host-based

information and content-based analysis, we are able to deal

with two millions URL strings in five minutes. Our system

misses less than 9% of malicious instances while only 25%

of the data set are required detailed content-based analysis

by the back-end system. This has surpassed the requirements

from the security service provider. We also introduced an

online learning technique in our framework so that the filtering

models can be modified dynamically if there is any feedback

from the back-end content analysis engine. Moreover, the

online learning mechanism also fits with the very short lifetime

characteristic of malicious URLs. Our proposed framework

will significantly reduce the burden of doing content-based

analysis and using the bandwidth for content retrieval and can

be combined with other web security services smoothly.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable

comments and feedback. This work was supported by Na-

tional Science Council, National Taiwan University and Intel

Corporation under the grants NSC101-2911-I-002-001 and

NTU102R7501.

REFERENCES

[1] Blade malware url analysis results. http://www.blade-defender.org/
eval-lab/.

[2] Spam and open relay blocking system. http://www.sorbs.net/.

[3] Uribl.com realtime uri blacklist. http://www.uribl.com/.

[4] G. Aaron and R. Rasmussen. Global phishing survey: Trends and
domain name use in 2h2012. http://docs.apwg.org/reports/APWG
GlobalPhishingSurvey 2H2012.pdf, 2013.

[5] A. Blum, B. Wardman, T. Solorio, and G. Warner. Lexical feature based
phishing url detection using online learning. In Proceedings of the 3rd

ACM workshop on Artificial intelligence and security, AISec ’10, pages
54–60, New York, NY, USA, 2010. ACM.

[6] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer.
Online passive-aggressive algorithms. Journal of Machine Learning

Research, 7:551–585, Dec. 2006.
[7] M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear

classification. In Proceedings of the 25th international conference on

Machine learning, ICML ’08, pages 264–271, New York, NY, USA,
2008.

[8] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A framework for
detection and measurement of phishing attacks. In Proceedings of the

2007 ACM workshop on Recurring malcode, WORM ’07, pages 1–8,
New York, NY, USA, 2007. ACM.

[9] Google. Google safe browsing. https://developers.google.com/
safe-browsing/.

[10] L. Invernizzi and P. M. Comparetti. Evilseed: A guided approach to
finding malicious web pages. In IEEE Symposium on Security and

Privacy, pages 428–442. IEEE Computer Society, 2012.
[11] A. Le, A. Markopoulou, and M. Faloutsos. Phishdef: Url names say it

all. In INFOCOM, pages 191–195. IEEE, 2011.
[12] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang. Knowing your enemy:

understanding and detecting malicious web advertising. In T. Yu,
G. Danezis, and V. D. Gligor, editors, ACM Conference on Computer

and Communications Security, pages 674–686. ACM, 2012.
[13] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious

urls: an application of large-scale online learning. In Proceedings of

the 26th Annual International Conference on Machine Learning, ICML
’09, pages 681–688, New York, NY, USA, 2009. ACM.

[14] D. Maslennikov and Y. Namestnikov. Kaspersky security bulletin. statis-
tics 2012. http://www.securelist.com/en/analysis/204792255/Kaspersky
Security Bulletin 2012 The overall statistics for 2012, 2013.

[15] MaxMind. Geolite autonomous system number database. http://www.
maxmind.com/app/asnum.

[16] T. Micro. Trend micro web reputation service. http:
//cloudsecurity-apac.trendmicro.com/solutions-and-services/
spn-feature/web-reputation-service.aspx.

[17] S. Mustaca. Phishing, spam and malware statistics
for february 2011. http://techblog.avira.com/2011/03/12/
phishing-spam-and-malware-statistics-for-february-2011/en/, 2011.

[18] OpenDNS. Phishtank. http://www.phishtank.com/.
[19] H. K. Pao, Y. L. Chou, , and Y. J. Lee. Malicious url detection based

on kolmogorov complexity estimation. In The 2012 IEEE/WIC/ACM

International Conference on Web Intelligence, Dec. 2012.
[20] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song. Design and

evaluation of a real-time url spam filtering service. In Proceedings of

the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages 447–
462, Washington, DC, USA, 2011. IEEE Computer Society.

[21] C. Whittaker, B. Ryner, and M. Nazif. Large-scale automatic classifi-
cation of phishing pages. In NDSS. The Internet Society, 2010.

596



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


